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Solution to Exercise 7

1. Find all minimum/maximum points of the function

F (x, y) = xy − x− y + 3 ,

over the triangle with vertices at (0, 0), (2, 0), and (0, 4).

Solution. Fx = y− 1;Fy = x− 1. Therefore, (1, 1) is an interior critical point of F . Let
l1 be the line segment from (0, 0) to (2, 0); l2 be the line segment from (2, 0) to (0, 4); l3
be the line segment from (0, 4) to (0, 0).

Along l1, F (x, 0) = −x + 3 is decreasing, possible extrema are (0, 0) and (2, 0). Along

l2, F (x,−2x + 4) = −2x2 + 5x − 1, x ∈ [0, 2] has critical point at x =
5

4
. It suffices

to consider the values of F at (5/4, 3/2), (2, 0) and (0, 4). Along l3,F (x, 0) = −y + 3 is
decreasing, it suffices to consider the points (0, 0) and (0, 4).

Finally, we evaluate F at the aforementioned points:

F (1, 1) = 2, F (0, 0) = 3, F (2, 0) = 1, F (0, 4) = −1, F (5/4, 3/2) =
17

8
.

We see that the maximum point of F is (0, 0) with maximum value F (0, 0) = 3 and the
minimum point of F is (0, 4) with minimum value F (0, 4) = −1.

2. Find all maximum/minimum points of the function

z = xy

√
1− x2

a2
− y2

b2
,

in its natural domain.

Solution. The natural domain is
{

(x, y) : 1 − x2

a2
− y2

b2
≥ 0

}
(the closure of the ellipse)

and the function vanishes on its boundary. Computing zx and zy,

zx =
y(1− 2x2

a2
− y2

b2
)√

1− x2

a2
− y2

b2

zy =
x(1− x2

a2
− 2y2

b2
)√

1− x2

a2
− y2

b2

.

The critical points are (0, 0), (±a/
√

3,±b/
√

3) and (±a/
√

3,∓b/
√

3). At these points:

z(0, 0) = 0, z
( a√

3
,− b√

3

)
= − ab

3
√

3
= z
(
− a√

3
,
b√
3

)
,

z
( a√

3
,
b√
3

)
=

ab

3
√

3
= z
(
− a√

3
,− b√

3

)
.

Therefore, maximum points of z are (a/
√

3, b/
√

3) and (−a
√

3,−b
√

3) with maximum

value
ab

3
√

3
and minimum points of z are (a/

√
3,−b/

√
3) and (−a

√
3, b
√

3) with minimum

value − ab

3
√

3
.



Summer 2017 MATH2010 2

3. Determine whether the following problems have maximum or minimum in R2. Not need
to find them.

(a) g(x, y) = x3 + y3 − 3xy ,

(b) h(x, y) = x4 + y4 − x2 − xy − y2 ,
(c) k(x, y) = sinxy + x2 .

(d) f(x, y) = (x− y + 1)2 ,

Suggestion: Theorem 7.2 and its corollaries would be useful.

Solution. (a) Take y = 0, then g(x, 0) = x3, which tends to ∞ as x tends to ∞, and
tends to −∞ as x tends to −∞. Therefore, g has no maximum nor minimum.

(b) Since

x4 + y4 =
1

2
(x4 + y4) +

1

2
(x4 + y4)

≥ 1

2
(x4 + y4) + x2y2

=
1

2
(x2 + y2)2 ,

and
|x2 + xy + y2| ≤ 2(x2 + y2) ,

we have h(x, y) → ∞ uniformly as x2 + y2 → ∞, and hence h has no maximum while h
has minimum.

(c) Take y = 0, then k(x, 0) = x2, which tends to ∞ as x tends to ∞. Therefore, there
is no maximum. On the other hand, sinxy + x2 > −1 (this is clear when x 6= 0. When
x = 0, k(0, y) = 0 > −1.) and setting xn = 1/n, yn = −nπ/2, k(xn, yn) = −1+1/n2 → −1
as n→∞. Therefore, inf k = −1 but k has no minimum.

(d) Take y = 0, then f(x, 0) = (x + 1)2, which tends to ∞ as x tends to ∞. There-
fore, there does not exist maximum. On the other hand, f(x, y) = (x − y + 1)2 ≥ 0 and
= 0 when x−y+1 = 0. Therefore, all points in the plane x−y+1 = 0 are minimum points.

4. Find all maximum/minimum points of the function u = x2 − xy + y2 − 2x+ y .

Solution. Note that 2|xy| ≤ x2 + y2, x2 − xy + y2 ≥ (x2 + y2)/2 so u→∞ uniformly as
x2 + y2 →∞, hence u has no maximum while its minimum exists. Solving

ux = 2x− y − 2 = 0, uy = −x+ 2y + 1 = 0 ,

the only critical point is (1, 0), and it must be the minimum.

5. Find all maximum/minmimum points of the function u = xy2(1− x− 2y), x, y > 0 .

Solution. Consider the triangle with vertices at (0, 0), (1, 0) and (0, 1/2). Note that the
slant edge is given by x + 2y = 1, x ∈ [0, 1]. Hence we see that u > 0 inside the triangle,
u = 0 on the boundary of the triangle, u < 0 outside the triangle. Therefore, u must have
maximum inside the triangle, and must be an interior critical point. We have

ux = y2(1− x− 2y)− xy2 , uy = 2xy(1− x− 2y)− 2xy2 .
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Solving ux = uy = 0, we have (x, y) = (1/4, 1/4), which is the maximum of u. On the
other hand, since u(x, x) = x3(1− 3x)→ −∞ as x→∞, u has no minimum.

6. Let (x1, y1), · · · , (xn, yn) be n many order pairs. Find the straight line y = ax+ b so that
the square error

F (a, b) =

n∑
j=1

(yj − axj − b)2 , (a, b) ∈ R2,

is minimized.

Solution. Computing the partial derivatives of F (with notation x = (x1, ..., xn) and
y = (y1, ..., yn)) :

∂F

∂a
= 2

n∑
j=1

(yj − axj − b)xj = 2(x · y − a|x|2 − b
n∑

j=1

xj) ,

∂F

∂b
= 2

n∑
j=1

(yj − axj − b)(−1) = −2(
n∑

j=1

(yj − axj)− nb) .

Setting
∂F

∂a
=
∂F

∂b
= 0, we have

a|x|2 + b
n∑

j=1

xj = x · y,

and

a
n∑

j=1

xj + nb =
n∑

j=1

yj ,

which is a linear system with two variables a, b. Solving the above linear system yields

a =
nx · y − (

∑n
j=1 xj)(

∑n
j=1 yj)

n|x|2 − (
∑n

j=1 xj)
2

,

and in terms of a, b is expressed as

b =
1

n

( n∑
j=1

yj − a
n∑

j=1

xj

)
.

7. Find all maximum/minimum points of the function

w(x, y) = xy +
50

x
+

20

y
, x, y > 0 .

Solution. Note that w → ∞ uniformly near the boundary of {(x, y) : x, y > 0}. There-
fore, w has no maximum and has minimum, which must be an interior critical point of w.
We have

wx = y − 50

x2
, wy = x− 20

y2
.

Solving wx = wy = 0, the critical point (x, y) = (5, 2). By the above discussion, (5, 2) is
the minimum point of w.
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8. Find and classify the critical points of the following functions

(a) f1(x, y) = 9 + 4y − 3x2 − 2y2 + 4xy .

(b) f2(x, y) = 3x− x3 − 3xy2 .

(c) f3(x, y) = x4 + y4 − 4xy .

Solution. (a) The only critical point of f1 is (2, 3), and its Hessian matrix is given by[
−6 4
4 −4

]
. The eigenvalues are

−10±
√

68

2
, which are negative. Therefore, (2, 3) is a

local maximum of f1.

(b) The critical points of f2 are (0, 1), (0,−1), (1, 0), (−1, 0), and the Hessian matrix is

given by

[
−6x −6y
−6y −6x

]
.

Substituting each of the above critical points to Hessian matrix and computing the eigen-
values of each of the Hessian matrix, we see that all the critical points are saddle points
of f2.

(c) The critical points of f3 are (0, 0), (1, 1), (−1,−1), and the Hessian matrix of f3 is given

by

[
12x2 −4
−4 12y2

]
.

We see that (0, 0) is a saddle point and (1, 1) is a local minimum of f3.

9. Find and classify the critical points of the function

H(x, y) = xy log(x2 + y2), (x, y) 6= (0, 0) ,

and H(0, 0) = 0.

Solution. At (x, y) 6= (0, 0),

Hx = y log(x2 + y2) +
2x2y

x2 + y2
, Hy = x log(x2 + y2) +

2xy2

x2 + y2
.

On the other hand, by the definition of partial derivatives Hx(0, 0) = Hy(0, 0) = 0. The

critical points of H are given by (0, 0),
(
± 1√

2e
,± 1√

2e

)
,
(
± 1√

2e
,∓ 1√

2e

)
.

The Hessian matrix of H is given by
2x3y + 6xy3

(x2 + y2)2
log(x2 + y2) + 2− 4x2y2

(x2 + y2)2

log(x2 + y2) + 2− 4x2y2

(x2 + y2)2
2xy3 + 6x3y

(x2 + y2)2

 .

At
( 1√

2e
,

1√
2e

)
and

(
− 1√

2e
,− 1√

2e

)
, the Hessian becomes 2

e2
0

0
2

e2

 .
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At
( 1√

2e
,− 1√

2e

)
,
(
− 1√

2e
,

1√
2e

)
, the Hessian becomes − 2

e2
0

0 − 2

e2

 .

Therefore, ( 1√
2e
,

1√
2e

)
,
(
− 1√

2e
,− 1√

2e

)
,

are local minimum points and( 1√
2e
,− 1√

2e

)
,
(
− 1√

2e
,

1√
2e

)
,

are local maximum points.

It is not clear if the function is twice differentiable at the critical point (0, 0), so we cannot
apply the Second Derivative Test. However, H is negative near (0, 0) when xy > 0 and
positive when xy < 0, we see that (0, 0) is a saddle.

10. Find all maximum/minimum points of the function

h(x, y, z) = xyz ,

over the set {(x, y, z) : x+ y + z = 1, x, y, z ≥ 0 }.

Solution. Apply the Lagrange multiplier method to h subject to the constraint g(x, y, z) =
x+ y + z − 1 to get 

hx = λgx,

hy = λgy,

hz = λgz,

g(x, y, z) = 0 .

More explicitly, 
yz = λ,

xz = λ,

xy = λ,

x+ y + z = 1 .

Multiplying the first three equations gives

x2y2z2 = λ3,

which implies xyz = λ
3
2 . It follows that x = y = z = λ

1
2 . Using the last equation we get

x = y = z = 1/3. Therefore, (1, 1, 1)/3 is a maximum point of h with maximum value
1/27.

On the other hand, h is continuous on the compact set K = {(x, y, z) : x + y + z =
1, x, y, z ≥ 0 }, h > 0 in its interior, and vanishes if and only if x = 0 or y = 0 or z = 0.
Therefore, the minimum of h on K must be attained on these boundary points.
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11. Consider a hexagon with vertices (±1, 0), (±x,±y), x, y ≥ 0, inscribed in the unit circle.
Show that the area is maximal when it is a regular hexagon with equal sides and angles.

Solution. By elementary geometry, the area of the hexagon with vertices (±1, 0), (±x,±y)
is given by

A(x, y) = 4
(
xy +

1

2
y(1− x)) = 4xy + 2y(1− x) = 2xy + 2y , 0 ≤ x, y ≤ 1 ,

where (x, y) satisfies x2 + y2 = 1. Therefore, we have to maximize A(x, y) with constraint
equation x2 + y2 = 1, that is, over the compact set

{
(x, y) : x2 + y2 = 1, x, y ≥ 0

}
.

By Lagrange multiplier, we have 
2y = 2λx,

2x+ 2 = 2λy,

x2 + y2 = 1 .

It follows that y = λx and x+ 1 = λ2y. Therefore,

x =
1

λ2 − 1
, y =

λ

λ2 − 1
.

Substitute these expressions of x and y to the last equation gives

1 + λ2 = (λ2 − 1)2 ,

that is,
λ4 − 3λ2 = 0 .

Hence, λ2 = 0 or λ2 = 3. In the former case, x = −1, is excluded. Therefore, λ2 = 3,

and hence λ = ±
√

3. If λ = −
√

3, y = −
√

3

2
, is excluded. Therefore, λ =

√
3, and

hence (x, y) = (1/2,
√

3/2). Now, A is considered over a compact set and it is equal to
0 at the endpoints (1, 0), (0, 1) and positive inside. So it must attain its maximum. Now
(1/2,

√
3/2) is the only critical point so it must be the maximum of A. You can verify that

it gives the regular hexagon by showing that all sides of this hexagon are of equal length.

12. Use Lagrange multiplier to show that the distance from a point z to the hyperplane
H : a · x = b is given by

|a · z − b|
|a|

.

Solution. Let x = (x1, ..., xn) and p = (p1, ..., pn) with p being fixed. Let q(x) =∑n
j=1(xj − pj)2 be the square of distance between x and p. We have to minimize q(x)

subject to g(x) = a · x− b = 0.

Applying the Lagrange multiplier method to q(x) along g(x) = a · x− b, we have{
2(xi − pi) = λai, i = 1, · · · , n,
a · x− b = 0 .
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For each 1 ≤ i ≤ n, multiply ai on both sides of the first equation and then sum up over
all i, we have

2

n∑
i=1

(aixi)− 2

n∑
i=1

(aipi) = λ

n∑
i=1

a2i .

We may rewrite it as
2b− 2a · p = λ|a|2 .

Therefore, λ =
2b− 2a · p
|a|2

, and

q(x) =

n∑
j=1

(
λ
aj
2

)2
=

(2b− 2a · p
|a|2

)2 n∑
j=1

(aj
2

)2
=

( |b− a · p|
|a|

)2
,

which is the minimum of q(x), i.e. square of the distance from p to the hyperplane.

Therefore, the distance is given by
|b− a · p|
|a|

.

Note. The distance square function q tends to infinity uniformly so the minimum must
attain somewhere. Now there is only one critical point so it must be the minimum point.

13. Find the points on the ellipse x2 + xy + y2 = 3 that are closest to and farthest from the
origin. Hint: Write the equations in the form ax+ by = 0, cx+ dy = 0, and use the fact
that ad− bc = 0 if there are non-trivial solutions.

Solution. Let q(x, y) = x2 + y2 and g(x, y) = x2 + xy + y2 − 3. We solve the extremal
problem for q(x, y) subject to g(x, y) = 0. First of all, the problem is over the compact
set {(x, y) : x2 + xy + y2 = 3} hence maximum/minimum both are attained somewhere.

Using Lagrange multiplier we have the following system
2x = λ(2x+ y),

2y = λ(x+ 2y),

x2 + xy + y2 − 3 = 0.

The first two equations are {
2(1− λ)x− λy = 0,

−λx+ 2(1− λ)y = 0.

Since this system has nontrivial solution,∣∣∣∣ 2(1− λ) −λ
−λ 2(1− λ)

∣∣∣∣ = 0 ,

which is a quadratic equation in λ. Solving it to get two distinct solutions λ1 = 2, λ2 = 2/3.
When λ = 2, (x, y) = (

√
3/2,−

√
3/2) or (−

√
3/2,

√
3/2).

When λ = 2/3, (x, y) = (1, 1) or (−1,−1). We have
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q

(√
3

2
,−
√

3

2

)
= q

(
−
√

3

2
,

√
3

2

)
=

3

2
,

and
q(1, 1) = q(−1,−1) = 2 .

Therefore, (
√

3/2,−
√

3/2), (−
√

3/2,
√

3/2) are the points on the ellipse closest to the
origin, while (1, 1), (−1,−1) are the points on the ellipse farthest from the origin.

14. Let p ∈ G be a critical point of f subject to g = 0. Show that if its Lagrange multiplier is
non-zero, then it is also a critical point of g subject to f − f(p) = 0.

Solution. As p is a critical point of f under g = 0, ∇f(p) = λ∇g(p) for some λ ∈ R.

Since λ 6= 0, we have ∇g(p) = µ∇f(p), where µ =
1

λ
. Therefore, p is also a critical point

for g under f − f(p) = 0.

15. (a) Find the points of the hyperbola xy = 1 that are closest to the origin (0, 0).

(b) Show that the same points maximize xy over the circle x2 + y2 − 2 = 0.

(c) Can you explain the “duality” in (a) and (b)?

Solution. (a) Let h(x, y) = x2 + y2 and g(x, y) = xy. We minimize h(x, y) subject to
g(x, y) = 1. By Lagrange multiplier 

2x = λy,

2y = λx,

xy = 1 .

We have 4xy = λ2xy. It is easy to see that x, y 6= 0, so λ = ±2. When λ = 2, x = y, and
hence (x, y) = (1, 1) or (−1,−1). When λ = −2, x = −y, and hence x2 = −1, which is
impossible. Therefore, the critical points are (1, 1) and (−1,−1), and the minimum of q
is given by q(1, 1) = q(−1,−1) = 2. (1, 1) and (−1,−1) are the points on the hyperbola
closest to the origin.

(b) Let g(x, y) = xy and h(x, y) = x2 + y2. We maximize g(x, y) subject to h(x, y) = 2.
By Lagrange multiplier 

y = 2µx,

x = 2µy,

x2 + y2 = 2.

Note that this system is the same as in (a) with µ =
1

λ
. Hence µ = 1/2 or −1/2,

each of which implies x = ±y, and hence (x, y) = (1, 1), (−1, 1), (1,−1), (−1,−1). Since
f(1, 1) = f(−1,−1) = 1 and f(1,−1) = f(−1, 1) = −1, (1, 1) and (−1,−1) are the
maximum points of f .

(c) (a) and (b) show that the minimization of h over g = 1 and the maximization of g over
h = 2 have the same extremal points.
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16. A company uses the Cobb-Douglas production function

N(x, y) = 10x0.6y0.4

to estimate a new product. Here x is the number of units of labor and y is the number
of units of capital required to produce N(x, y) units of the product. Each unit of labor
costs $30 and each unit of capital costs $60. If $300, 000 is budgeted for the production,
determine how that amount should be allocated to maximize production, and find the
maximum production.

Solution. The constraint is 30x+ 60y = 300, 000 which is simplified to x+ 2y = 10, 000.
We have 

6x−0.4y0.4 = λ,

4x0.6y−0.6 = 2λ,

x+ 2y = 10, 000 .

We find x = 3y and then y = 2, 000, and x = 6, 000. Therefore, the amount which maxi-
mizes the production is (x, y) = (6, 000, 2, 000) with maximum productionN(6, 000, 2, 000) =
10(6, 000)0.6(2, 000)0.4.

17. Let T be a right triangle with sides x, y and hypotenuse z. Find the one maximizing the
area subject to the perimeter constraint x + y + z = 10. Does there exist an area mini-
mizing one?

Solution. Let f(x, y, z) =
1

2
xy, g(x, y, z) = x+ y + z and h(x, y, z) = x2 + y2 − z2 (this

constraint asserts this is a right triangle). Applying the Lagrange multiplier method to
f(x, y, z) subject to g(x, y, z) = 10 and h(x, y, z) = 0, we have the following system of
equations: 

1

2
y = λ+ 2µx,

1

2
x = λ+ 2µy,

0 = λ− 2µz,

x+ y + z = 10,

x2 + y2 = z2 .

We have (1 + 4µ)(x− y) = 0. If µ = −1

4
,

1

2
y = λ− 1

2
x , 0 = λ+

1

2
z,

together imply x+ y + z = 0, which is impossible. Therefore, (1 + 4µ)(x− y) = 0 implies
x = y. Then {

2x+ z = 10,

2x2 = z2,

which is readily solved to give x = 10 ± 5
√

2. Since x cannot exceed 10, only 10 − 5
√

2
is admitted. From it we find z = 10

√
2 − 10. We conclude that the triangle maximizing

the area under these two constraints has sides x = y = 10 − 5
√

2 and z = 10
√

2 − 10.
The minimum of area is 0 when the triangle collapses into a line segment, so it cannot be
attained.
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18. Find the maximum/minimum points of the function g(x, y, z) = xy + z2 subject to the
constraints y − x = 0 and x2 + y2 + z2 = 4.

Solution. Let h(x, y, z) = y − x and k(x, y, z) = x2 + y2 + z2. We have

y = −λ+ 2µx,

x = λ+ 2µy,

2z = 2µz,

y − x = 0,

x2 + y2 + z2 = 4 .

We have x = y and then λ = 0. And 2z(1 − µ) = 0. If µ = 1, then x = y = 0 and
z = ±2. Therefore, (x, y, z) = (0, 0,±2) is a critical point of g. If z = 0, then 2x2 = 4, i.e.
x = ±

√
2. Therefore, (x, y, z) = (

√
2,
√

2, 0), (−
√

2,−
√

2, 0) are critical points of g. Since
g(0, 0,±2) = 4 and g(

√
2,
√

2, 0) = g(−
√

2,−
√

2, 0) = 2, (0, 0,±2) are maximum points
while (

√
2,
√

2, 0), (−
√

2,−
√

2, 0) are minimum points.

Note. The underlying set is the intersection of the unit sphere with a plane hence it is
compact.


